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ABSTRACT
Ultra-high dose rate FLASH radiotherapy (FLASH-RT) has gained significant attention in the radiotherapy
community in recent years. This technique delivers radiation at an exceptionally high dose rate—often
thousands of times higher than that of conventional radiotherapy (CONV-RT)—within an extremely brief
period.This novel irradiation tech- nique shows a protective effect on normal tissues, also known as the flash
effect. At the same time, FLASH-RT is comparable to CONV-RT in terms of tumor- killing efficacy. As basic
research dedicates to uncover the mechanisms by which FLASH-RT reduces radiation-induced normal tissue
damage, clinical trials of FLASH-RT have been gradually conducted worldwide. This article systematically
reviews the evidence of the feasibility and safety of FLASH-RT in clinical practice and offers insights into the
future translation of this technology in clinic.
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INTRODUCTION 
Radiotherapy is a key approach in cancer treatment, aiming to
deliver a high radiation dose to tumors while minimizing
exposure to surrounding healthy tissues and organs at risk. This
strategy maximizes the potential to cure or reduce the tumor
while lowering the frequency and severity of radiation-induced
side effects. Based on dose rate, conventional radiotherapy
(CONV-RT) can be divided into categories such as conventional
dose rate radiotherapy (≤ 0.03 Gy/second), high dose rate
brachytherapy (approximately 0.3 Gy/second), and stereotactic
body radiotherapy (around 1 Gy/second).
 In recent years, the development of technology allows linear
accelerators provide various radiotherapy strategies including
ultra-high dose rate flash radiotherapy (FLASH-RT)(5). FLASH-RT is
a cutting-edge treatment modality to deliver the total radiation
doses into the target volume by ultra-high dose rate (mean dose
rate, 100 Gy/second; and instantaneous dose rate, up to 106
Gy/second) in a very short time (less than 200 millisecond and
preferably microse- conds)(2). FLASH effect was observed in
normal tissues after FLASH-RT by offering superior tissue
protection in comparison to CONV-RT without compromising
cancer treatment in various in vivo models(6). FLASH-RT has a
unique and revolutionary radiobiological advantage; and become
an emerging science-driven advances in radiotherapy. Re-
searchers and clinicians are dedicated to promote the clinical
translation of this innovative technology.

ces radiation-induced normal tissue damage, including brain,
skin, lungs, intestines, mesenchymal tissue, muscle, and
hematopoietic stem cells; in the meantime, FLASH-RT
maintaining similar tumor-killing effect as CONV-RT(7-11).
Generally, the following parameters are needed to implement
FLASH-RT: Average dose rate ≥ 40 Gy/second, instantaneous dose
rate ≥ 100 Gy/second, irradiation time ≤ 200 ms(2). Currently,
oxygen consumption, reactive oxygen species (ROS), and the
immune cell sparing has been hypothesized to clarify the
biological mechanisms of the flash effect(12-16).
Oxygen consumption: Oxygen content is one of the influencing
factors of cell survival fraction(17). With the increase of oxygen
content, the survival fraction of normal cells decreases after
radiotherapy(18). Based on the plasmid model, flash effect is
affected by oxygen content(19). The oxygen depletion hypothesis
emphasized the significance of instantaneous dose rate within
FLASH-RT(20,21). FLASH-RT can deliver the entire radiation dose
to the target area within milliseconds, rapidly depleting a large
number of oxygen molecules in normal tissues. However, for
hypoxic tumor tissues, the influence is minimal. This
instantaneous of hypoxia is beneficial for protecting normal
tissues(22). In contrast, Cao et al
(23) showed that at the cellular level, the oxygen consumption
capacity of flash irradiation was inferior to that of conven- tional
irradiation; in normal tissues, the continuous oxygen supply
during conventional irradiation can offset its inherent oxygen
consumption capacity(23). Therefore, FLASH-RT does consume
oxygen, but it is not enough to fully explain the flash effect.
DNA integrity: A group from China focused on the combination
of FLASH-RT (photons) and immunotherapy and proposed the
“DNA integrity” hypothesis to explain the flash effect(14). The
group found that FLASH-RT can alleviate intestinal damage in
programmed death ligand 1 knockout mice and significantly
improve the survival rate. Although FLASH-RT and CONV-RT 

CLINICAL BASIS OF FLASH-RT
FLASH-RT related basic research
Since the mid-20th century, and especially from 2014, great
progress has been achieved for FLASH-RT with the advance- ment
of science and technology in radiation oncology. The flash effect
has been replicated in zebrafish and various mammal model
thereafter. Compared with CONV-RT, FLASH-RT significantly redu-
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cause similar genomic DNA damage in intestinal epithelial
cells, FLASH-RT induces fewer cytoplasmic DNA fragments
than CONV-RT, thereby reducing the activation of the cyclic
guanosine monophosphate- adenosine monophosphate
synthase-stimulator of interferon genes signaling pathway
and mitigating intestinal inflam- matory damage. Further
investigation revealed that the longer irradiation time of
CONV-RT leads to sustained DNA damage in intestinal cells
and gradual disruption of DNA integrity, resulting in a large
number of DNA fragments. In contrast, FLASH-RT, with a total
time of less than 100 milliseconds, allows DNA molecules to
maintain relative integrity, thereby reducing the production
of DNA fragments and alleviating intestinal tissue
inflammatory damage. Overall, the time of radiation dose
deposition and the average dose rate are important factors
that influencing the flash effect, this is also known as “DNA
integrity”.
Free radical reaction: ROS has been implied to play an
important role in alleviating radiation induced damage to
normal tissues(24). In classic radiation biology, both direct
effect and indirect effect account for eradicating tumor cells.
Previous study indicated the indirect effect of ionizing
radiation initiate flash effect rather than the direct effect(25).
Water radio- lysis confirmed that the production of free
radicals was associated with significant differences between
FLASH-RT and CONV-RT in diffusion phase(13). Oxidative
stress involved in inducing the flash effect(26). Therefore,
ROS generated by the indirect effect of ionizing radiation is
essential for the flash effect.
Immune cell sparing: In addition, several groups have
attempted to explain the flash effect from the perspective of
immune cell sparing(27,28). CONV-RT can lead to
lymphopenia, which is related to the dose received by
circulating immune cells(29). Compared to CONV-RT, FLASH-
RT has a shorter irradiation time, and a single high dose of
FLASH- RT is beneficial in reducing the proportion of
irradiated lymphocytes and lowering the induction rate of
chromosomal aberrations(30). A glioblastoma dose
measurement and blood flow model shows that immune cell
depletion in FLASH- RT is approximately 4% of that in CONV-
RT(27).
Tumor microenvironment remodeling: FLASH-RT has been
reported to remodel the tumor microenvironment (TME),
which comprises cancer cells, stromal cells, immune cells,
vasculature, and extracellular components(15-31). Previous
analysis demonstrated FLASH-RT contributed to vascular
preservation by sparing endothelial cells and vasculature(31).
Alleviated vascular damage prevents hypoxia-driven tumor
progression and maintains nutrient delivery, potentially
curbing aggressive tumor behavior. By sparing endothelial
cells and vasculature, FLASH-RT maintains tumor oxygena-
tion better than CONV-RT, which can induce hypoxia through
vascular damage(15). The vascular preservation could
enhance subsequent therapies reliant on oxygen-dependent
mechanisms. Compared to CONV-RT, FLASH-RT may
equivalent in promoting acute, pro-inflammatory cytokines
(e.g., interferon-γ, tumor necrosis factor-α) without chronic
inflammation, balancing immune activation while avoiding
tumor-promoting environments(32).
 While these theories provide plausible explanations for the
flash effect, the flash effect is likely a result of multiple
interconnected mechanisms occurring at different
spatiotemporal scales. The rapid depletion of oxygen and the
altered kinetics of free radical reactions provide immediate
protection to normal tissues, while mitochondrial and
immunological changes contribute to long-term tissue sparing
and repair. Thus, the flash effect should be elucidated from
the perspective of physical, chemical, and biological cascades 

(Figure 1). Future research should focus on integrating these
mechanisms into a unified framework and exploring the
optimal clinical application of FLASH-RT.

FLASH-RT in animal trials

The efficacy and safety of FLASH-RT have been investigated in
numerous animal experiments. Favaudon et al(3) used a
mouse lung tumor model to deliver a single dose of 17 Gy
FLASH-RT to the bilateral lungs and observed a significantly
reduced lung fibrosis compared to CONV-RT 5-7 weeks later.
Vozenin et al(33) replicated the flash effect in mini-pig
models with a single dose reaching 28-34 Gy. 36 weeks post-
irradiation, histological analysis showed skin fibrosis,
necrosis, and keratinization was much more severe in the
CONV-RT site than that in the FLASH-RT lesion, further
analysis revealed inflammatory infiltration and epithelial cell
remodeling were involved in regulating radiation-induced
normal tissue damage; the number of hair follicles preserved
in the flash-irradiated skin was significantly higher than that
in the CONV-RT site, and immunofluorescence staining
showed that epidermal cluster of differentiation 34 + stem
cells were effectively preserved in the FLASH-RT group(33). In
addition, the team included six cats with primary nasal
squamous cell carcinoma (T2/T3N0M0) and administered
electron FLASH-RT (single dose, 25-41 Gy), tumor lesions
were successfully eradicated, only three cats developed mild
to moderate radiation-induced acute dermatitis around the
nose (33). Therefore, single high-dose FLASH-RT associated
normal tissue damage is controllable.
 Subsequently, the University of Zurich collaborated with
Lausanne University Hospital and conducted a phase III
animal trial, cat patients with primary nasal squamous cell
carcinoma were treated with either FLASH-RT (seven cases,
single dose, 30 Gy) or CONV-RT (nine cases, 4.8 Gy × 10
fractions). Both groups experienced mild radiation-induced
acute normal tissue damage, and tumors were well controlled
at the first year. However, three cats in the FLASH-RT group
developed maxillary bone necrosis 9-15 months post-FLASH-
RT(34). This may be attributed to hotspots (42 Gy) in the
irradiated area, which exceeded the tolerance of cat patients’
maxillary bone and oral mucosa.

CURRENT STATUS OF FLASH-RT FOR CLINICAL
TRIALS

Electron FLASH-RT

In 2019, Lausanne University Hospital conducted the first clinical
trial of electron-beam FLASH-RT(35). The patient with cutaneous
lymphoma had previously received CONV-RT, including
fractionation regimens of 20 Gy in 10 fractions and 21 Gy in 6
fractions (average dose rate: 0.08 Gy/second), the patient had
experienced Grade 3 radiation-induced acute skin damage. In
contrast, a single dose of 15 Gy FLASH-RT (average dose rate: 166
Gy/second) was associated with grade 1 skin toxicity, and the skin
injury alleviated in a shorter period. Moreover, tumors were
eradicated at the irra- diated site. In the next two years, the
tumor control rate of FLASH-RT was comparable to that of CONV-
RT, and the late

Figure 1 The tissue response to ultra-high dose rate flash
radiotherapy is the result of a series of physical, chemical
and biological cascades. FLASH-RT: Ultra-high dose rate flash
radiotherapy; CONV-RT: Conventional radiotherapy; ROS:
Reactive oxygen species; H2O: Oxidant; OH: Hydroxyl radical.
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radiation toxicities were similar between FLASH-RT and
CONV-RT(36). This study demonstrated the feasibility of app-
lying electron-beam FLASH-RT in human skin.
 In 2021, Lausanne University Hospital registered a phase I
dose-escalation clinical trial (22-34 Gy) of FLASH-RT for
malignant melanoma of the skin (No. NCT04986696). In 2023,
a phase II clinical trial for basal cell carcinoma and squamous
cell carcinoma of the skin was registered (No. NCT05724875).
Both studies are currently recruiting patients.

3 cm. thus, the device is mainly designed for superficial
tumors (38). The phase I clinical trial of dose escalated FLASH-
RT (22-34 Gy) for cutaneous malignant melanoma was carried
out by using the Mobetron intraoperative radiotherapy
system(39). The Mobetron is a self-shielded electron beam
linearccelerator designed by IntraOp Medical company in the
United States. The average and instantaneous dose rate of
Mobetron were 100 and 1000 Gy/second, this device can
penetrate tissues to a depth of about 4 cm(40). Furthermore,
there were several groups from European and United States
successfully established electron FLASH-RT platforms by
modifying the existing linear accelerators(41-44).
 Very-high-energy electron (VHEE) beams have been explored
recently. VHEE can penetrate deeply into the tissues with
energy above 100 MeV(45). Compared with conventional
energy electron beams commonly used in clinical practice,
VHEE beams with energy of 250 MeV can be utilized to treat
deep-seated tumors in the region 5 cm-30 cm(46). Moreover,
VHEE has uniform dose distribution, high conformity and low
scattering rate, which is superior to X-ray(47,48). It was
confirmed that VHEE could effectively cause DNA damage
based on the plasmid model, and approximately 99% of the
damage was caused by indirect effects of radiation(49).
However, whether VHEE beams can induce normal tissue
sparing effect remains to be further studied.
Proton FLASH-RT: The penetration depth of low-linear energy
transfer irradiation is limited, and electron FLASH-RT applies
only to superficial tumors(50). Interestingly, the ProBeam
proton system developed by Varian Medical System (United
States) was capable of using to treat deep-seated tumors,
with an average dose rate of 60 Gy/second and an
instantaneous dose rate of 100 Gy/second(37). Protons have
the advantages of strong tissue penetration, uniform dose
distribution, high conformity, and Bragg peak(51). However,
proton device is incredibly expensive and the cost is rela-
tively high, which is not conducive to the large-scale
utilization of FLASH-RT.
X - ray photon FLASH-RT: For medical linear accelerators that
generates high-energy X-ray to prescribe CONV-RT, the X- ray
was generated by electron flying through a periodic magnetic
field(52). Nevertheless, the energy conversion rate (about
1%) is extremely low and current clinical systems are orders
of magnitude too slow for general FLASH-RT(53). To achieve
X-ray FLASH-RT, a more powerful accelerator and an electron-
to-photon conversion target that can tolerate instantaneous
ultra-high dose rate are required(54). The group from
Stanford University established the Pluridirectional high-
energy agile scanning electronic radiotherapy (PHASER)
platform by using the next-generation medical linac
technology to achieve image-guided photon FLASH-RT(55).
The PHASER could obtain much higher beam currents (500
times) compared to conventional medical linacs to produce
FLASH-RT. The group from China Academy of Engineering
Physics established a platform for advanced radiotherapy
research based on the superconducting electron accelerator,
the device can produce FLASH-RT with an average dose rate
up to 2000 Gy/second, and the instantaneous dose rate up to
9
× 106 Gy/second(56). Another group in Tsinghua University
developed a compact linear accelerator to produce ultra-high
dose rate X-ray, the average dose rates at source-surface
distances of 50 cm and 70 cm were 80 Gy/second and 43 Gy/
second, respectively(57). The results confirmed the feasibility
of X-ray FLASH-RT with a room temperature radio- frequency
linear accelerator system can perform FLASH-RT at a clinical
source-surface distance, and is expected to provide a
problem-solving technique for future X-ray FLASH-RT
equipment development.

Proton FLASH-RT
In 2020, the Cincinnati Children’s/UC Health Proton Therapy
Center performed the world’s first proton FLASH-RT clinical
trial (FAST-01, NCT04592887)(37). 10 patients (aged 27-81
years) with painful extremity bone metastases were included.
All the patients were previously treated with CONV-RT (8 Gy
in a single fraction). A total of 12 metastatic lesions were
eligible for proton FLASH-RT. The ProBeam proton
radiotherapy therapy system was utilized to conduct FLASH-
RT (a single dose of 8 Gy, dose rate of 60 Gy/second). The
average treatment time of proton FLASH-RT was 15.7
minutes, the irradiation time was less than 1 second. Three
months after FLASH-RT, completely or partially remission was
achieved in 7 patients. Among the 12 irradiated lesions, 6
lesions achieved complete remission and 2 lesions achieved
partially remission. FLASH-RT was comparable to palliative
CONV-RT in relieving pain. Radiation-associated injury was
mild, transient and mild skin pigmentation was identified as
the most common side effects (Radiation Oncology/Toxicity
grading grade 1), and there were no serious adverse effects
after FLASH-RT. The results suggested that proton FLASH- RT
was safety and clinically feasible.
 Key parameters for these FLASH-RT clinical trials were shown
in Table 1. With the encouraging results, the Cincinnati
Children’s/UC Health Proton Therapy Center initiated a
prospective, single-arm clinical trial (FAST-02, NCT05524064)
in 2022. Patients with painful bone metastases in the thorax
were recruited, the study aimed to clarify therapeutic effect
of proton FLASH-RT on pain relief, and evaluate radiation-
associated injury to organs at risk including lung and heart.

THE CHALLENGES OF FLASH-RT FOR CLINICAL
TRIALS
FLASH-RT device for clinical trial
Electron FLASH-RT: FLASH-RT can instantaneously deliver
high-energy radiation. Currently, the energy of commonly
used medical linear accelerators is limited, and a specific
irradiation platform is required, or existing linear accelerators
need to be modified to achieve FLASH-RT. The first human
trial conducted by Lausanne University Hospital in 2019 used
the Oriatron eRT6 electron linear accelerator developed by
PMB-ALCEN. The dosimetric parameters used for FLASH-RT
including an energy of 5.6 MeV, an average dose rate of 166
Gy/second, an instantaneous dose rate of 1.8 × 105 Gy/
second, and can only penetrate tissues to a depth of about 
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 While FLASH-RT holds transformative potential, its broader
application for deep tumors hinges on overcoming device-
related dose rate and penetration barriers (Table 2).
Innovations in accelerator technology, beam delivery, and
radiobiology will be critical to unlock its full clinical utility.
Moreover, it is worth noting that the cost of FLASH-RT
platform is one of the important limiting factors for the
promotion of clinical trials. To reduce the cost, designed for
compactness, economy, intelligent, and clinical efficiency are
required for FLASH-RT devices. Devices that was compa- tible
with existing radiotherapy facilities can be considered.
Compared with proton FLASH-RT platform, the VHEE linear
accelerator has a cost advantage and may proposed for
clinical application.

The implementation of FLASH-RT
Despite the advantage of FLASH-RT in reducing radiation
damage to normal tissues, relevant clinical studies are still in
their infancy. As an emerging technology, both clinicians and
patients may be unfamiliar with FLASH-RT’s benefits and
risks, leading to hesitancy in trial participation. In addition,
early-phase trials involve experimental protocols with
uncertain long-term outcomes, complicating informed
consent and recruitment efforts. Therefore, detailed
implementa- tion guidelines should be established, and strict
control over the indications is necessary(35-37). The clinical
trial should be performed under the framework of
International Ethical Guidelines for Health-related Research
Involving Humans organized by World Health Organization,
the project should be reviewed and approved by the ethics
committee of the local institution. The eligible patients are
associated with disease progression that may lead to life-
threatening compli- cations, and FLASH-RT is expected to
bring benefits. A FLASH-RT group that consists of at least two
senior radiation oncologists, two radiation physicists and one
radiologic technician should be established.

Dose and fractionation schedules in FLASH-RT
In CONV-RT, single-dose irradiation is often positively
correlated with radiation-induced normal tissue damage(58).
Fractionated radiotherapy is applied to maximize the
eradication of cancer cells while minimizing adverse effects to
normal tissues(59). Current evidence regarding the impact of
dose rate on radiation-associated normal tissue damage is
encouraging. Numerous of studies have validated that a
single high-dose FLASH-RT can effectively reduce normal
tissues damages(60). However, it is unclear whether the
fractionation schemes and treatment modalities used in
CONV- RT are equally applicable to FLASH-RT. Böhlen et
al(61) suggested that the FLASH effect is tissue-specific and
negatively correlated with the dose delivered. In the first
patient treated with FLASH-RT at Lausanne University
Hospital, the FLASH effect was not obvious(35). Furthermore,
in a Phase III animal trial of feline primary squamous cell
carcinoma, late radiation-induced normal tissue damage was
observed(34).
 This highlights the limitations of single high-dose FLASH-RT.
Maity and Koumenis(62) suggested that the late radiation
toxicities observed after FLASH-RT might be correlated with
large irradiated field size. Vozenin et al(2) demon-

VHEE: Very high-energy electrons.

strated that FLASH-RT reduces radiation-associated normal
tissue damages by approximately one-third compared to
CONV-RT, and a single high-dose irradiation may concealed
the potential normal tissue-sparing effect. Meanwhile,
previous studies of FLASH-RT have indicated that a single
irradiation dose of less than 5 Gy is insufficient to trigger the
FLASH effect(25). Therefore, in daily clinical practice, the
implementation of single high-dose or low-dose (single dose <
5 Gy) fractionated FLASH-RT should be approached with great
caution. To achieve optimal normal tissue sparing effect
without attenuating tumor control rates, hypo-fractionated
radiotherapy may appropriate for FLASH-RT. Due to the
unique radiobiological effects of FLASH-RT, whether
biological effective dose or equivalent dose in 2-Gy fractions
can be used to evaluate the therapeutic effects of hypo-
fractionated FLASH-RT remains to be explored. Moreover,
current studies typically focus only on the acute toxicities
that occur after FLASH-RT, lacking long-term follow-up
observations and in-depth mechanistic investigations of late
complications.

Quality control and quality assurance of FLASH-RT
FLASH-RT is a novel technique for tumor treatment with an
ultra-high does rate of more than 40 Gy/second, the irra-
diation time is extremely short compared to CONV-RT. The
integrated process of FLASH-RT is complex and involves
understanding of the principles of radiochemistry, medical
physics, radiation biology, treatment planning, radiation
dosimetry, simulation, radiation safety and protection to
ensure accurate and safe delivery of treatment(35-37). The
safety of FLASH-RT is of paramount importance, quality
control and quality assurance are essential in before and
during the application of FLASH-RT.
 For CONV-RT, the American Association of Physicists in
Medicine Task Group 142 report (TG 142) is itself regarded as
a comprehensive guideline covering quality control
recommendations for linear accelerators (linacs), while the
Task Group 198 report (TG 198) provides the implementation
details to ensure standardized operation in routine clinical
applications(63). Based on these reports, it is essential to
closely monitor dosimetric parameters related to ultra-high
dose rates to minimize errors and maintain treatment
accuracy. It is recommended that the quality control and
quality assurance for FLASH-RT include the following
parameters: Beam energy; Pulse repetition frequency; Duty
cycle;
Temporal pulse structure; Beam intensity; Cumulative dose
per irradiation; Dose per pulse; Instantaneous dose rate;
Average dose rate per beam; Average dose rate per fraction;
Dose distribution per beam; Dose distribution per
fraction(64). Because the instantaneous dose rate of FLASH-
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-RT is significantly higher than that of CONV-RT, ionization
chambers and
semiconductors will achieve saturation during FLASH-
RT(65,66). Alanine dosimeter, thermoluminescence
dosimeter, GafchromicTM EBT films, and photoluminescence
dosimeter has been utilized to measure the does rate of
FLASH-RT(67, 68). The diamond detector exhibits a
considerable linearity of does response to both electron and
photon FLASH-RT, and could provide a relatively rapid and
accurate dosimetry(69). The group from Tsinghua University
designing a large dynamic range current measurement circuit
based on the pre-integration method, and developed a
diamond detector system prototype with real-time current
output using a diamond sensor (B1-HV, CIVIDECTM
Instrumentation, Austria) (70). The device is expected to be
applied in the quality assurance of FLASH-RT. In addition,
image-guided FLASH-RT can be considered to ensure real-
time tracking of tumors and improve dose delivery. Overall,
when implementing
FLASH-RT, optimal quality control and quality assurance is the
cornerstone of giving correct and accurate dose to tumor,
and reducing radiation damage to normal tissues.

FLASH-RT sensitivity
FLASH-RT is different from CONV-RT by sparing normal
tissues, whether FLASH-RT has similar radiation sensitivity
compared with CONV-RT is unclear. Sensitive to FLASH
irradiation facilitate to further screening eligible patients for
FLASH-RT. In the phase 3 animal trial of primary nasal
squamous cell carcinoma in cats, one cat in the FLASH-RT
group experienced disease progression 1-year post
irradiation, while there was no tumor progression observed in
the CONV-RT group(34). The results suggested that individual
sensitivity to radiation may lead to different results. Previous
bioinfor- matics analysis of human acute lymphoblastic
leukemia showed that genotype may involve in regulating the
sensitivity of FLASH-RT(11). However, the sample size for
studies estimated the sensitivity of FLASH-RT is small, and
further exploration is necessary.

Combined FLASH-RT with other anticancer treatment
FLASH-RT is emerging as a transformative modality in cancer
treatment, particularly due to its unique ability to combine
with other therapies to enhance efficacy and reduce toxicity.
Combination with immunotherapy: FLASH-RT has shown
significant potential when combined with immunotherapy
(14). This combination leverages the unique ability of FLASH-
RT to modulate the TME by reducing immunosuppressive
factors and enhancing immune cell infiltration(15). For
example, FLASH-RT has been shown to decrease the
expression of programmed death ligand 1 on tumor cells,
thereby enhancing the efficacy of anti-programmed death-1
antibodies(14). Additionally, FLASH-RT reduces the levels of
transforming growth factor-beta (TGF-β), a cytokine
associated with tumor metastasis and immune evasion(3).
This reduction in TGF-β can further augment the antitumor
effects of immuno- therapy.
Combination with chemotherapy: Combining FLASH-RT with
chemotherapy can potentially enhance the overall the-
rapeutic efficacy by leveraging the complementary
mechanisms of both modalities. CONV-RT often induces DNA
damage, which can be synergistically enhanced by
chemotherapy agents(71). FLASH-RT, with its unique ability to
spare normal tissues while maintaining tumor control, may
allow for higher doses of chemotherapy without exacerbating
toxicity. However, further research is needed to optimize the
sequencing and dosing of FLASH-RT and chemotherapy.
Combination with surgery: FLASH-RT can also be integrated 

CONCLUSION

with surgical interventions to improve outcomes. For
instance, FLASH-RT can be used preoperatively to reduce
tumor size and enhance surgical resectability, or postoper-
atively to eliminate residual cancer cells and reduce the risk
of recurrence. The reduced toxicity of FLASH-RT compared to
CONV-RT makes it an attractive option for patients
undergoing surgical procedures, as it minimizes damage to
surrounding healthy tissues.
Combination with CONV-RT: FLASH-RT can be combined with
CONV-RT to optimize treatment outcomes. This combination
can leverage the benefits of both modalities, such as the
rapid delivery of high doses by FLASH-RT and the more
prolonged, fractionated approach of CONV-RT. Studies have
shown that FLASH-RT can reduce inflammation and vascular
damage within the TME, which are common side effects of
CONV-RT(15-32). This synergistic approach may enhance
tumor control while minimizing adverse effects. The IMPULSE
trial (NCT04986696) is exploring the use of FLASH-RT in
treating skin metastases from melanoma, with initial findings
indicating no dose-limiting toxicities at lower dose levels.

In summary, FLASH-RT is a milestone in cancer treatment.
Preliminary clinical trial data indicate that FLASH-RT is
feasible and safe. The extremely short treatment time per
fraction significantly enhances work efficiency and offers the
advantage of reducing radiation-induced normal tissues
damage. Molecular and genetic studies are critical to decode
FLASH-RT’s unique radiobiology. By dissecting DNA repair
dynamics, redox signaling, immune modulation, and
epigenetic regulation, researchers can identify actionable
targets to optimize FLASH-RT and expand its clinical utility.
Collaborative efforts across radiobiology, genomics, and
bioinformatics will accelerate translation from bench to
bedside. In the near future, FLASH-RT is expected to undergo
further clinical validation through ongoing Phase II trials in
the United States and Switzerland. These studies will confirm
its efficacy and safety across various cancer types. Techno-
logical advancements in proton and electron beam delivery
will also enhance the applicability of FLASH-RT, allowing
deeper tissue penetration and more precise targeting of
tumors. This could enable higher radiation doses to be
delivered, potentially improving cure rates for radioresistant
tumors without increasing toxicity to surrounding healthy
tissues. We look forward to more clinical trials to facilitate
the clinical translation of FLASH-RT, so that cancer patients
can benefit to a great extent.
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